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Graphs are partitioned into six classes from the perspective of chirality, depending on 
whether they are topologically achiral, whether there is at least one topologically achiral 
embedding, whether there is at least one rigidly achiral embedding, and whether there is at least 
one rigidly achiral presentation. Three of these classes are well represented by a variety of che- 
mical structures: topologically chiral molecular graphs with no topologically achiral embed- 
dings, topologically chiral molecular graphs with at least one rigidly achiral embedding, and 
topologically achiral molecular graphs with at least one rigidly achiral presentation. Known 
representatives of these three classes are described. Various meanings associated with the con- 
cepts "molecular graph" and "intrinsic chirality" are critically discussed. Previous arrange- 
ments of molecular graphs and molecules in a hierarchical order, ranging from the most to the 
least chiral, are interpreted in terms of the graph's and molecule's "chiral persistence". 

1. I n t r o d u c t i o n  

A molecular graph describes the molecular  consti tution or bond connectivity; in 
such a graph, differently labeled vertices represent different kinds of  a toms and dif- 
ferently labeled edges represent different types of  bonds, as will be discussed in 
fur ther  detail below. A graph is said to be topologically chiralifand only if it cannot  
be mapped  onto its mirror  image by continuous deformation.  Because the vast 
major i ty  of  molecular  graphs a r e p l a n a r -  that  is, embeddable in the plane without  
the intersection of  any edges - and therefore necessarily achiral in euclidean 
3-space, it follows that, with few exceptions, geometrically chiral molecules are 
topologically achiral (fig. 1). The inherent intellectual and aesthetic appeal o f  topo- 
logically chiral structures, such as knots, links, and M6bius strips or ladders, has 
long exerted a special fascination for chemists [1] and has mot iva ted  a spate of  
experiments aimed at the synthesis of  molecules containing these exotic structural  
features [1-5]. Fur thermore ,  the existence of  this class of  molecules has inspired a 
variety of  schemes [6-8] designed to arrange molecular  structures in a hierarchical 
order, ranging f rom the "mos t"  to the " least"  chiral [3,6,7]. In the present paper  
we present  a systematic classification of  chiral and achiral topological construc- 
tions and discuss the hierarchical ordering of  chiral structures [3,6-8] in the light of  
this classification scheme. 

© J.C. Baltzer AG, Science Publishers 



246 C Liang, K. Mislow / Classification of topologically chiralmolecules 

E 
\ 

Fig. 1. An example of a geometrically chiral molecule paired with its topologically achiral planar 
graph: (-)-(R,R,R,R)-[6]Chochin, with hydrogen atoms suppressed for clarity (M. Nakazaki, 

K. Yamamoto, S. Tanaka and H. Kametani, J. Org. Chem. 42 (1977) 287). 

2. Chirality as a criterion for the classification of  graphs 

We begin our discussion with a consideration of simple graphs. Abstractly 
defined [9], a simple graph is a pair (V(G), E(G)), where V(G), the vertex set, is a 
non-empty finite set of points (vertices), and E(G), the edge family of G, is a finite 
set ofunordered pairs of vertices. The edges, though drawn as line segments, merely 
symbolize neighborhood relationships between pairs of vertices, so that the actual 
image (presentation) of a graph is infinitely deformable. This applies with equal 
force to knots and links, which, though normally drawn as smooth curves, may be 
viewed as simple closed polygonal curves in 3-space [10] and thus as circuit 
graphs, i.e. as connected graphs that are regular of degree two [9]. 

From the perspective of chirality, a simple graph may or may not (a) be topologi- 
cally achiral, (b) have at least one topologically achiral embedding, (c) have at least 
one embedding that belongs to an achiral point group and that is therefore geome- 
trically achiral (such an embedding is said to be rigidly achiral), and (d) have at 
least one rigidly achiral presentation. Ten of the 24 = 16 possible combinations are 
logical contradictions because a topologically achiral graph must have at least 
one topologically achiral embedding, a graph with a rigidly achiral embedding 
must also have a topologically achiral embedding, and a graph with a rigidly 
achiral presentation must be topologically achiral and have a rigidly achiral embed- 
ding. Hence, only six classes are possible, as follows: 

A. Topologically chiral graphs with no topologically achiral embeddings. 

B. Topologically chiral graphs with at least one topologically but no rigidly 
achiral embedding. 

C. Topologically chiral graphs with at least one rigidly achiral embedding. 

D. Topologically achiral graphs with no rigidly achiral embeddings. 

E. Topologically achiral graphs with at least one rigidly achiral embedding but 
no rigidly achiral presentations. 

F. Topologically achiral graphs with at least one rigidly achiral presentation. 
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Fig. 2. Flowchart for the classification of simple graphs into six classes, denoted by capital letters. 
The decision in response to questions is given by heavy (yes) and light (no) lines. The questions are: 
(1) Is the graph topologically achiral? (2) Is there at least one topologically achiral embedding? (3) Is 

there at least one rigidly achiral embedding? (4) Is there at least one rigidly achiral presentation? 

Figure  2 displays a f lowchart  that  can be used to derive these six classes. 
While classes A, C, and  F are each well represented by a variety of  chemical  

structures,  as will be shown below, no molecular graphs exist at present that belong 
to classes B, D, and E. Flapan  recently in t roduced the novel idea of  topological ly  
achiral  graphs  with no rigidly achiral embeddings  ("intrinsically flexibly achiral  
g raphs")  [8], and  provided  the first example  (fig. 3(a)) of  an abstract  graph  belong- 
ing to wha t  we call class D. By l inking two of  the edges to fo rm a trefoil knot ,  as 
shown in fig. 3(b), it is possible to generate a topological ly chiral embedding  of  
fig. 3(a) tha t  belongs to class B. Class E is best represented by the seven non-invert i -  
ble topological ly  achiral pr ime knots  with up  to 10 crossings (817, 1079, 1081, 1088, 

Ca) ~) (c) 

Fig. 3. (a) A topologically achiral graph with no rigidly achiral embeddings [8]. (b) A topologically 
chiral embedding of the graph in (a). (c) A topologicaUy achiral knot with no rigidly achiral 

presentation (817). 
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10109, 10115, 10118), which are asymmetric in all of their presentations [11]. One of 
these knots (817) is shown in fig. 3(c). In contrast to invertible amphicheiral prime 
knots, such as the figure-eight knot (41), non-invertible prime knots with up to 10 
crossings cannot attain rigidly achiral presentations [12], and it follows that inter- 
conversion of enantiomorphous presentations of these knots by continuous defor- 
mation cannot proceed through a rigidly achiral state. 

The realization of molecular graphs in these three classes remains an open 
challenge. 

3. Molecular  graphs 

The notion of molecular graph lies at the heart of all discussions of topological 
chirality in chemistry. There is no problem in identifying the vertex set, since each 
vertex bears a one-to-one correspondence to an appropriately labeled atom in the 
molecule. The relationship of edges to bonds is, however, far less satisfactory. "The 
root of the difficulty lies in the historical sanction of localized valence bond formu- 
las, which, for all their virtues of convenience, imply a sharpness of definition 
which is physically unsound: for the sake of simplicity, degrees of atomic interac- 
tion in a molecule are ignored, and pairs of atoms are regarded as either bonded or 
not" [13]. Hence, because the concept of a chemical bond is "nicht scharf definier- 
bar" [14a], "considerable arbitrariness is built into the definition of a molecular 
graph" [2], specifically with regard to membership in the edge set. In principle the 
problem is solvable by edge-weighting the complete graph, with each atom bonded 
to every other atom in the molecule and the set of edges mapped one-to-one onto 
a set of real numbers that "express in some manner the nature and extent" of bond- 
ing interactions between pairs of atoms [13]. The question remains, however, 
which of these bonds are to be regarded as topologically significant [2]. According 
to Walba, only covalent bonds are to be so regarded, while "H-bonds, ion-ion 
bonds, ion-dipole bonds, or dipole-dipole bonds are not considered edges of a 
molecular graph" [2]. While this definition has the advantage of being consistent 
with common usage in chemistry, where "molecular graph" carries the same mean- 
ing as "constitutional formula" or "localized valence bond diagram", it suffers 
from two major disadvantages. First, "even the term covalent bond is arbitrary" 
[2], since there is, in the general case, a continuum between covalent and ionic 
bonds. Second, the choice of  bonds regarded as topologically significant depends on 
the molecular model under consideration, and it may not always be appropriate to 
limit the edge set to covalent bonds. For example, Chambron et al. [4] included 
metal-ligand and metal-metal bonds in their edge set, along with "purely cova- 
lent" bonds. And, in a topological analysis of structural elements within a protein 
molecule, hydrogen bonds were included as edges in the molecular graph [15]; as 
the authors pointed out, "a description of molecular structural topology need not 
be limited only to covalent interactions, and can be generalized to include other 
weaker but specific interactions in protein molecules". Thus, whether a molecule is 
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Fig. 4. (a) The Simmons-Paquette molecule [16]. Unlabeled vertices represent carbon atoms, and 
hydrogen atoms are suppressed for clarity. (b) A hypothetical derivative of  (a) in which one of the 
- C H 2 - O -  bonds is replaced by a - ( C H  3)2N. .. H - O -  hydrogen bond. (c) Planar embedding of the 

molecular graph of(b), with the hydrogen bond broken. 

topologically chiral may depend on which bonds are considered topologically sig- 
nificant. For example, the Simmons-Paquette molecule [16] (fig. 4(a)) is topologi- 
cally chiral [17], but the hypothetical derivative in fig. 4(b) is topologically chiral 
only if the N . . .  H-O hydrogen bond is considered topologically significant, other- 
wise the molecular graph can be embedded in the plane (fig. 4(c)) and the molecule 
is therefore topologically achiral. 

Given these unavoidable uncertainties in defining membership in the edge set, 
the chemist has no alternative but to follow the advice of the mathematician Weyl 
[18] who had this to say with reference to valence bond diagrams (as translated in 
[14b]) "One cannot expect a rough sketch purporting to represent reality to contain 
all possible shades of that reality. Nonetheless the sketcher should have the cour- 
age of his convictions and draw the lines firmly". Once the members of the edge set 
are selected, all uncertainty vanishes, and the molecular graph is treated exactly 
as a topological object [19], in which consideration of metrics and internal energy 
play no role. For example, whereas it is obviously physically impossible to flatten 
the molecule in fig. 1 so that all the atoms lie in a plane while all the bonds remain 
intact, planarization of the corresponding molecular graph is a perfectly unexcep- 
tionable topological operation. As this example illustrates, when we speak of the 
topological chirality or achirality of a molecule we actually refer to its graph, and 
not necessarily to a physically realistic model. It is well to keep this distinction in 
mind. 

3.1. M O L E C U L A R  GRAPHS IN CLASS A 

Walba's insightful conjecture [2,20] that the graphs of the Simmons-Paquette 
molecule [16] (fig. 4(a)), of the 3-rung Mrbius ladder molecule [21] (fig. 5(a)), and 
of the ferrocenophenone in fig. 5(b) [22] are topologically chiral was subsequently 
proven by Simon and Wolcott [17,19,23]. Flapan proved that all the embeddings of 
the first two graphs are topologically chiral [24-26]. Hence, the graphs of the 
Simmons-Paquette molecule and of Walba's 3-rung Mrbius ladder molecule 
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Fig. 5. (a) Walba's 3-rung M6bius ladder molecule [21]. (b) [4](1, Y)[4](3,3')[3](4,4~)-ferrocenophan - 
16-one [22]. Unlabeled vertices represent carbon atoms, and hydrogen atoms are suppressed for 

clarity. 

belong to class A (table 1). With the exception of these two graphs and those of 
the two C2-symmetric triple-layered naphthalenophanes [27] (fig. 6(a) and (b)), all 
the graphs in table 1 are nonplanar and constitutionally asymmetric. That is, every 
vertex has a different connectivity and therefore carries a different label (or 
color). As shown by Wolcott [23], a nonplanar and constitutionally asymmetric 
graph G in 3-space containing a subgraph that is homeomorphic to M3, the six-ver- 
tex M6bius ladder with three colored rungs, must be topologically chiral. Since 
every embedding of G must also be nonplanar and constitutionally asymmetric, it 
follows that all these graphs belong to class A. More generally, any nonplanar 
graph with no automorphisms of order two is in class A [8]. Although the two 
naphthalenophanes are not constitutionally asymmetric, the three bridging edges 
in the central naphthalene can be regarded as three rungs (heavy lines in fig. 6(c)) of 
a graph that is contractible to M3; hence these two graphs also belong to class A. 

We conclude this section with some remarks concerning the other graphs listed 
in table 1. The ferrocenophenone in fig. 5(b) is one of a half dozen similar struc- 
tures [22,28]. As has recently been noted [29], there are numerous proteins [30-40] 
that are topologically chiral; for the reasons given above, these all belong to class 
A. Representative examples are schematically depicted in fig. 7. Finally, the two 
clusters [41,42] in fig. 8 are remarkable chiefly because the coordination numbers 
of the central carbon atoms, 5 and 7, exceed the normal tetracovalency of that ele- 
ment. In the formalism of the localized valence bond model, these carbon-metal 
bonds are merely "partial" bonds, and one might therefore question whether they 
should be included as edges in the molecular graph. In our decision to do so, we 
have followed Weyl's advice to "draw the lines firmly". 

3.2. MOLECULAR GRAPHS IN CLASS C 

Molecular graphs that belong to this class are listed in table 2. Considered as 
abstract objects, knots are the traditional representatives of this class, which they 
populate in abundant numbers: of the 12,965 types of prime knots K with crossing 
numbers c(K) ~< 13, all but 78 are topologically chiral [43]. All nontrivial (nonpla- 
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Table 1 
A survey of topologically chiral molecular graphs in class A. 
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Molecule Reference Figure 

The Simmons-Paquette molecule 
Walba's 3-rung M6bius ladder molecule 

Triple-layered naphthalenophane 
Triple-layered tetrathia[3.3]naphthalenophane 

[4](1, l')[3](2,2')[3](4,4')-ferrocenophan- 15-one 
[4](1, l')[3](2,2')[4](4,4')-ferrocenophan- 15-one 
[4](1,1') [4](3,3')[3] (4,4')-ferrocenophan- 16-one 
[4](1, l')[4](3,3')[3](4,5')-ferrocenophan- 16-one 
16-Methylene[4](1,1')[4](3,3')[3](4,4')- ferrocenophane 
[4][4][4]-ct-oxo[3]ferrocenophane 

Quinoprotein TV-MADH 
Quinoprotein PD-MADH 
Quinoprotein AM 1-MADH (tentative) 
Chromatium high potential iron protein (HiPIP) 
HiPIP from Rhodocyclus tenuis 
Iron-sulfur flavoprotein trimethylamine 

dehydrogenase 
Ferredoxin from Azotobacter vinelandii 
Ferredoxin from Peptococuus aerogenes 
Variant-3 protein scorpion Neurotoxin 

from Centruroides sculpturatus Ewing 
Toxin II from the scorpion Androetonus 

austral& Hector 
71-H and 71-P Thionins from 

barley and wheat (tentative) 

Cluster HOssC(CO)13 [PO(OMe)P(OMe)2] 
Cluster Rh8 (CO) 19 C 

[16] 4(a) 
[21] 5(a) 

[27] 6(a) 
[271 6(b) 

[22] 
[221 
[221 
[22] 
[22] 
[281 

[30] 
[31] 
[321 
[331 
[341 

[35] 
[36] 
[37] 

[38] 

5(b) 

7(a) 

7(b) 

[391 7(c) 

[401 

[411 8(a) 
[421 8(b) 

(a) Co) (c) 
Fig. 6. (a) Triple-layered naphthalenophane [27]. (b) Triple-layered tetrathia[3.3]naphthal- 
enophane [27]. Unlabeled vertices represent carbon atoms, and hydrogen atoms are suppressed for 

clarity. (c) Graph of(a), contractible to M3. 
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Fig. 7. Schematic diagrams of some representative topologically chiral proteins [29]. (a) Condensed 
schematic drawing of the L subunit of the quinoprotein TV-MADH [30]. The looped line represents 
the polypeptide backbone with N and C terminals. Cysteine (or half-cystine) residues are numbered 
and their a-carbons are indicated by solid circles. Intrachain disulfide bonds are shown as dashed 
lines joining a pair of solid circles. The heavy line symbolizes an intrachain cofactor link. (b) Chroma- 
tium high potential iron protein (HiPIP) [33], one of several Fe4S4 cluster-containing proteins. 

(c) Toxin II  from the scorpion Androctonus australis Hector [39]. 

nar) knots are homeomorphic to the trivial knot, or unknot (a triangle, or a circle 
in the plane). As it happens, molecular knots are also dominant in this class: among 
DNA molecules, at least 13 different types of topologically chiral prime knots 
(31,51,52, 61,62, 71,72, 73, 74, 75, 76, 77, 91) have been identified, along with three 
topologically chiral product knots (31#31,31#41,41#51) [44]. The rational synth- 
esis of trefoil knots (fig. 9) by Sauvage and coworkers [45-47] provided the first - 
and so far the only - example of knotted molecules outside the realm of nucleic 
acids. 

Links are multi-component knots, and as such are homeomorphic to sets of 
unlinked unknots. Hence, topologically chiral links also belong to class C. All 

O = O s  O = O  
m = P  

o, 

• =Rh 0 = 0  

(a) (b) 

Fig. 8. (a) Cluster HOssC(CO)I~[PO(OMe)P(OMe)2 ] [41]. (b) Cluster Rha(CO)I9C [42]. All but the 
central (endohedral) carbon atoms are represented by unlabeled vertices. Except for the bridging 

hydride in (a), hydrogen atoms are suppressed for clarity. 



C. Liang, K. Mislow / Classification of topologically chiralmolecules 

Table 2 
A survey of topologically chiral molecular graphs in class C. 
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Molecule Reference Figure 

DNA knots 
Trefoil molecule K-86 
Dicopper(I) trefoil knot, Cu2K-862+ 

2+ Dicopper(I) trefoil knots Cu2K-80 , 
Cu2K-822+ , Cu2K-842+, and Cu2K-902+ 

DNA links 
2-Crossing catenane 
4-Crossing catenane 

4-Rung M6bius ladder molecule 

FeaS4 {cyclo- (XN[CH2]sNX-p-C6H4-p-CH2C6H4)2 } 2- 
(X = p-SC6H4CO) 

[44] 
[45] 9(a) 
[46] 9(b) 

[47] 

[48] 
[49] 10(a) 
[50] lO(b) 

[51] ll(a) 

[52] 1 l(b) 

known topologically chiral molecular links (catenanes) are made up of two topolo- 
gically achiral components. The simplest of  these is a 2-crossing link composed of 
two oriented unknots; orientation of both unknots is essential for chirality. Such a 
link is found among the nucleic acids [48], and a molecule with this property 
(fig. 10(a)) has also been synthesized in the laboratory of  Sauvage [49]. Orientation 
of the component unknots is not required for topological chirality if there are 
more than two crossings in the link, as exemplified by the 4-crossing catenane in 
fig. 10(b) whose synthesis was achieved by Sauvage and coworkers [50]. Additional 
members of  class C are a 5-crossing D N A  link composed of  two unknots, and a 6- 
crossing D N A  link composed of one oriented unknot and one (topologically 
achiral) oriented figure-eight knot [48]. 

F,o O o  
( / - -o c 

O 

.) 

° _% 

/ O=Cu ~ " ~  

(a) (b) 

Fig. 9. (a) Trefoil molecule K-86 [45]. (b) Dicopper(I) trefoil knot Cu2K-862+ [46]. Unmarked ver- 
tices represent carbon atoms, and hydrogen atoms are suppressed for clarity. 
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Fig. 10. (a) 2-Crossing catenane with oriented component rings [49]. (b) 4-Crossing catenane with 
nonoriented component rings [50]. Unmarked vertices represent carbon atoms, and hydrogen atoms 

are suppressed for clarity. 

Two molecular graphs that belong to class C but that are neither knots nor links 
are shown in fig. 11. One is Walba's 4-rung M6bius ladder (fig. 1 l(a)) [51], which 
has an embedding with $4 symmetry [24]. The other is a synthetic iron-sulfur pro- 
tein analog (fig. 11 (b)) [52] which is topologically chiral [29] but has a centrosym- 
metric embedding (fig. 11 (c)). 

3.3 MOLECULAR GRAPHS IN CLASS F 

As of this writing, all known topologically achiral molecular graphs can assume 
rigidly achiral presentations. The great majority of these graphs are planar, and it 
is obvious that they are rigidly achiral when they are embedded in the plane. Rather 
more uncommon are topologically achiral molecular graphs which contain sub- 
graphs that are either homeomorphic or contractible to the Kuratowski graphs 
K3,3 or K5. The rigidly achiral presentations of such graphs are therefore nonplanar 

,C o o< 

(a) (b) (c) 

Fig. 11. (a) 4-Rung Mrbius ladder molecule [51]. (b) Fe4Sa{cyclo-(XN[CH2]sNX-p-C6H4-p- 
CH2C6t-I4)2} 2- (X =p-SC6H4CO) [52]. Unmarked vertices represent carbon atoms, and hydrogen 

atoms are suppressed for clarity. (c) Rigidly achiral (Ci) embedding of(b). 
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[9]. Some examples [53-61] are shown in fig. 12. Except for the graphs of the mole- 
cules in fig. 12 (a) and (b), each of the molecular graphs in fig. 12 is reducible to 
either K3,3 or to K5 by suitable deletions or contractions. The molecular graphs in 
fig. 12 (a) and (b) are unique in this set because the former is reducible only to Ks 
and the latter only to K3,3. Note also the relationship between the molecular graphs 
in fig. 11 (b) (class C) and 12 (c) (class F). 

X "-'-'Y"-.. 
N "I X x 

X Fo--S. i-s__vo-o N \ s-t-F:I.,, 
X X\ R_S ,Fc-S R / 

• " .,.,N 
N ~ X _ _ y I X  

-]2- 

R = -C(O)C_.d~-p- 
X = -(CHx~- 
y = -(CHT. h- 

(a) Co) (c) 

(d) 

0 = -CO 
O = O s  

R N / " ~ _ .  X --I 2+ 
0 ~  / ( RN 
~ O ~ N R  ~ O  

N\ 
?9" Y o~\N_~o /~o 

(e) 

0 =-P(Ph)3 • =Au 0 =Hg 

~ X~X---~ X 

X ~ \ 0  

X = -CH i- 

(0 

o 
C~X "7 2- 

/k.  xo x X ~ I . ,  XC.~ 

x 

1 c ~ " ' ~  I "-~ x 
. -  × -  ~ --x/~ 

O = -CH~ o = O X~Cx. 
• = Fc X = -CH 2- "O 

(g) (h) (i) 

Fig. 12. Examples of molecules with nonplanar graph~ that have rigidly achiral presentations, and 
their highest attainable symmetries. (a) [53] Td. (b) [54] D3h. (c) [52] D2d- (d) [55] D2d. (e) [56] D3h. 

(f) [57] D2d. (g) [58] Cv (h) [59] D4d. (i) [60] $6. 
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4. Hierarchical  ordering ofchiral  structures 

We saw (fig. 2) that the set of graphs can be partitioned into those that are topo- 
logically chiral (set ABC) and those that are not (set DEF), that the graphs in sub- 
set ABC can be further partitioned into those that have at least one topologically 
achiral embedding (set BC) and those that do not (set A), and so forth, until all six 
classes have become disjoint. Figure 2 thus displays a hierarchic system, that is, 
"a system that is composed of interrelated subsystems, each of the latter being in 
turn hierarchic in structure until we reach some lowest level of elementary subsys- 
tem" [61]. The following might serve as a chemical analogy: molecules with empiri- 
cal formula C H 2  are  partitioned into molecules with molecular formulas C2H4, 
C3H6, C4H8, etc., molecules whose molecular formula is C3H6 are partitioned into 
those whose structural formula correspond to propene and cyclopropane, and so 
forth. The process of partitioning a set into equivalence classes thus generates hier- 
archic systems. Once a hierarchy is established, rank-ordering of the components 
according to their "level of complexity" becomes possible. In the preceding exam- 
ple, empirical formula CH2 is situated at the apex of complexity, the structural for- 
mulas corresponding to CH2 are the least complex "elementary subsystems", 
while molecular formulas occupy an intermediate level of complexity. In fig. 2, the 
set ABCDEF qualifies as the most and the six disjoint classes as the least complex 
systems, while ABC, BC, and so forth represent intermediate levels of complexity. 

There is, however, another way to develop a hierarchical ranking from fig. 2. If 
the flowchart is scanned horizontally from left to right, instead of vertically from 
top to bottom, the responses to the four questions concerning aspects of a graph's 
achirality are seen to range from four no's for class A to zero no's for class F, with 
classes B (three no's), C and D (two no's each), and E (one no) in between. This hier- 
archical order parallels, to some extent, the following three schemes that appear 
to have been developed independently of one another. 

In Flapan's "hierarchy of intrinsic chirality" [8], graphs that are "intrinsically 
chiral" correspond to class A, those that are "intrinsically flexibly achiral" corre- 
spond to class D, as mentioned above, and "rigidly achirally embeddable graphs" 
correspond to classes C, E, and F. 

Simon's "hierarchy of chirality" [6] is topped by "intrinsically chiral" graphs 
that correspond to class A as exemplified by the 5-rung M6bius ladder. Next come 
topologically chiral graphs that correspond to class C as exemplified by the trefoil 
knot, the oriented 2-crossing link, the 4-crossing link, and the 4-rung M6bius lad- 
der. Finally, molecules that owe their chirality to geometric rigidity are shown 
whose molecular graphs are planar and which therefore belong to class F; knot 817, 
which belongs to class E, is shown separately in a "hierarchy of achirality". 

Walba's "topological hierarchy of molecular chirality" [7] is also headed by 
"intrinsically chiral graphs" that correspond to class A; as previously noted [62], 
the remaining five classes in his scheme may be reduced to three (C, E, F). Thus, 
despite substantial differences among them, all three schemes are in full agreement 
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that graphs in class A, famously realized in the Simmons-Paquette molecule and 
in Walba's 3-rung M6bius ladder molecule, are alone in being "intrinsically 
chiral". According to Flapan, "a property of an embedded graph is extrinsic if it 
depends on how the graph is embedded, and intrinsic if it is independent of the 
embedding", where "embedded graph" refers to "a graph with a fixed configura- 
tion in 3-dimensional space" [8]. In that sense, the graphs in class A are indeed 
"intrinsically" chiral. 

In another sense, however, chirality is a property that is most decidedly only 
extrinsic. The reason is that whether or not an object is chiral "depends on the 
dimension of the space in which the object is embedded. Thus, objects that are enan- 
tiomorphs in E n are superposable by proper rotations in E n+l'' [62]; that is, 
"reflections in any dimension of space can be considered as rotations in a space one 
dimension higher" [63]. A formal proof was recently provided of the theorem 
"Any object that is chiral in n-dimensions is achiral in (n + 1)-dimensions and in 
any higher dimensions" [64]. All of this was recognized a long time ago by Martin 
Gardner, who noted that "If  we could put a paper M6bius band into 4-space, it 
would be possible to deform it and drop it back into 3-space as a band with any odd 
number of half-twists of either handedness [emphasis added]. Similarly, a band 
with no twis t s . . ,  could be taken into 4-space, twisted and dropped back into our 
space with any even number of half-twists of either handedness [emphasis added]" 
[65]. 

Along the same lines, it is easy to imagine graphs that are chiral in 2-space, for 
example the graph of the carbon skeleton of 1,2,4-trimethylbenzene (the circuit 
graph C6 with three univalent vertices adjacent to the vertices at positions 1, 2, and 
4), but which are obviously achiral in 3-space. One would hesitate to call such 
graphs "intrinsically" chiral even if all of their embeddings in 2-space were chiral. 
Similarly, because all graphs embedded in 3-space are achiral in 4-space, it is hard 
to justify the characterization of any such graphs, including those in class A, as 
"intrinsically" chiral. In short, it could be argued that there is no such thing as an 
"intrinsically" chiral object! In order to avoid possible confusion resulting from the 
two different interpretations of "intrinsic" in connection with chirality, we have 
refrained from use of this terminology in this paper. 

A final remark concerns the ranking of molecules or their graphs "by degree of 
chirality, from most chiral to least chiral" [7]. In connection with his "hierarchy of 
chirality", Simon noted that "Mathematically, at least, some molecules (or 
hypothetical structures) are more chiral than others" [6]. Along similar lines, 
Walba referred to his 3-rung M6bius ladder molecule as "the most chiral organic 
molecule known" [7] and to organic molecules in class A as "topologically most 
chiral" [3]. There are, of course, numerous measures by which chirality can be 
quantified; in all of these, however, the degree of chirality of an object is estimated 
by a numerical (real-valued) function, which may be continuous or non-continu- 
ous, and which is zero if and only if the object is achiral [62]. Because the hierarchi- 
cal ordering schemes described above are not numerical functions, it follows that 
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the degree of  chirality that  is ascribed to molecules and their graphs [3,6,7] does 
not  qualify as a measure of  chirality. But if  not  as a measure, what  basis is there for 
this rank  ordering? 

An answer to this question emerges upon consideration of  molecular  graphs 
whose chirality is independent  of  their embeddings in 3-space. To credit such a 
graph with being the "most  chiral" - and then to transfer this at tr ibution to the 
molecule i tself-suggests  translation into chemical terms: all topological stereo- 
isomers [2] of  molecules in class A are chiral, and this is true for none o f  the mole- 
cules in the other classes. Now consider the following analogy regarding molecules 
that  owe their chirality to geometric rigidity: all stereoisomers of  consti tutionally 
and geometrically asymmetr ic  molecules are chiral, and this is true for none o f  the 
molecules in the other chiral point  groups (Cn, Dn, T, O, I) since those can also 
have achiral stereoisomers (diastereomers). Yet asymmetr ic  molecules are no more  
chiral than those with rotat ional  symmetry.  This analogy tells us that  what  is at 
issue in these rankings [3,6,7] is not  chirality (the absence of  reflection symmetry)  
but  what  might be called chiralpersistence! That  is, chiral structures (or construc- 
tions) are judged to be " m o r e "  or "less" chirallypersistent  according to the degree 
or extent to which their chirality survives various geometric or topological distor- 
tions, embeddings, or even, in the case of  molecules, thermal agitations [7]. This 
granted,  if classes of  molecular  graphs, viewed as abstract topological objects 
embedded  in 3-space, are ranked according to the chiral persistence of  their mem-  
bership, graphs in class A do indeed top the list as the most  chirally persistent! 
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